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Abstract. Diffuse low-energy electron diffraction (LEED) intensities can be observed in all 
situations where the surface cannot be represented by a perfect biperiodic array of atoms or 
molecules. For instance, this occurs when binding sites are either occupied or not by adatoms, 
when several atoms or molecules are co-adsorbed, when one absorbed species can be located 
at several possible binding sites, etc. So far, the statistical aspects of this problem have 
been disregarded. In fact, under certain circumstances, it is possible to extract from diffuse 
intensities a quantity that only depends on the local atomic arrangement near a binding site. 
A method based upon this possibility has been systematically used in all diffuse LEED studies 
and consequently these studies have been totally devoted to the determination of this local 
atomic arrangement. We show in this paper that this method only works if one binding site 
is occupied or not (binary chemisorption). In the other cases, investigation of diffuse LEED 
intensities requires knowledge of the statistical distribution of occupied sites and thus the 
statistical aspects of this problem can no longer be bypassed. For this reason and also because 
this problem is intrinsically interesting, we particularly focus on it here. Diffuse LEED intensity 
can be approximated by a sesquilinear form of the form factors for each adsorbed species. 
The coefficients of this form are the Fourier transforms on the two-dimensional surface 
lattice of the site-occupancy pair correlation functions. A self-consistent molecular-field 
approximation of these correlation functions is given in this paper. Particularly, the validity 
of this approximation is discussed in detail for the binary chemisorption case. Diffuse LEED 
intensities are provided in some other cases: (i) two kinds of atom are distributed at the 
surface of a binary metallic alloy; (ii) two adsorbed species coexist at a single crystal surface. 
We arrive at the conclusion that investigation of diffuse LEED intensities generally requires 
the direct comparison of measured andcalculated intensities. In this way, we have toconsider 
the local arrangement of atoms near occupied binding sites together with their statistical 
distribution at the surface. 

1. Introduction 

1.1. Previous work 

In a previous paper, referred to as I (Le Bosse et a1 1988), we give a general expression 
of the incoherent intensity (or diffuse low-energy electron diffraction (LEED) intensity) 
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of electrons back-scattered at a single crystal surface partially covered with a disordered 
overlayer. More precisely, the relative incoherent intensity per unit of solid angle, in the 
direction (Of ,  qf) of the electron detector, is given by (in I, the ratio ki,/l Kf- l 2  has been 
omitted) 

x Z?, (p ,k ;  +k:)K,(p’,k; +k:). (1) 
In this expression, k = Ell2 ( E  is the energy of the primary electron beam), A is the unit- 
cell area, and k :  and k ;  are respectively the wavevectors of incident and back-scattered 
electrons outside the single crystal. Denoting as 8, the angle of incidence, k,, = 
sin 8, is the component of k:  perpendicular to the surface and kf, = Ell2 sin 8, is the 
same component for k ;  . On the other hand, if K ;  is the wavevector of back-scattered 
electrons inside the crystal, 

represents its component perpendicular to the surface. In expression ( 2 ) ,  VOpt is the 
optical potential of the substrate. As seen in I, K l ( p )  is the effective transition matrix 
of the reference site 1 in the chemisorption statep and S ( p , p ’ )  is the structure factor of 
the overlayer. Using here the same convention as in I, the chemisorption state p = 0 
always corresponds to a vacancy. In the casep,,, = 1, which represents for instance the 
adsorption of an atom at a well defined site of the surface, ZInLoh simply reduces to the 
product of a form factor by a structure factor (Saldin et a1 1985). We shall see that, in 
other cases, ZIncoh has a more complicated expression. The way of evaluating K1 is 
described in detail in I. However, in most of the cases that are examined in this paper, 
we can make one of the following assumptions at least: (i) surface coverage in atoms or 
molecules is low; (ii) adsorbed atoms or molecules are weak scatterers. In this way, 
incoherent intensity can be evaluated by only taking into account processes involving at 
most one single scattering event inside the overlayer. The evaluation of K , ( p )  becomes 
simpler than in the general case treated in I and leads to the expression 

Kf, = ( E  - v o p t  - Ilkfll / 1 2 ) 1 ’ 2  ( 2 )  

K I b ,  k ;  + k : )  = t l ( P ,  k ;  + k : )  

is} 
+ Z t , ( p , k ;  + k , ) M s ( k ,  + k : )  

where K,, is given by 

and M ,  is the scattering amplitude of the substrate?. In expression (3a) t l ( p )  is the 
transition matrix of reference site 1 in chemisorption state p .  In the momentum rep- 
resentation we have 

K,, = ( E  - Vopt - IlkfIl + g1I2)’~* (3b) 

where labelss, and s2 are + or -.  When adscatterers are adatoms, we can easily express 
t Note that there is a slight difference compared with I. The evaluation of M s  involves a displacement of the 
substrate in such a way that the reference site of the overlayer is located at the origin of space. 
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t l ( p )  in terms of the adatom phase shifts 6 j P )  for the incident energy E and the optical 
potential Vopt inside the overlayer: 

In I, the statistical aspects of the diffuse LEED problem have not been actually taken up. 
As a matter of fact, we have only considered the particular case of binary chemisorption 
where a given chemisorption site is occupied or not, and we have restricted ourselves to 
the following situations: (i) adsorbates are randomly distributed at 2D surface lattice 
sites; (ii) two adsorbates cannot coexist at two adjacent sites and occupancies of two 
non-adjacent sites are not correlated. However, we have shown in this work that a 
general treatment of the statistical aspects of the diffuse LEED problem requires the 
determination of the Fourier transform on the surface lattice of the site-occupancy pair 
correlation function: 

N 

S ( P > P ’ >  kfil - k,ll) = X l - / l ( P , P ’ )  exP[-i(kf(l - k,ll)T/l 

r / I ( P , P ’ )  = (n / (P)n l (P’ ) )  - ( n / ( P ) ) ( n I w ) .  

(6a) 

(6b )  
] = I  

In expression (6a ) ,  the vector T, defines the location of the jth site of the 2~ surface 
lattice, and in expression ( 6 b ) ,  nl(p,) is the occupancy operator of site ifor chemisorption 
statep,. This operator is defined by 

P max P m a x  P m a x  P max 

As in I, Ipl. . . p N )  denotes a state vector that characterises the particular overlayer 
configuration in which site 1 is in the chemisorption state p l , .  . . , site N is in the 
chemisorption statepN. In expressions ( 6 ) ,  averages are performed over a grand canoni- 
cal ensemble for which the density matrix is of the form 

So, evaluation of averages requires knowledge of a Hamiltonian X ,  which describes 
interactions between adatoms or admolecules and between adsorbate and substrate. 
We assume that interactions between adatoms or admolecules are described in terms of 
pair interactions and we define for each chemisorption state p an adsorption energy 
Eads(P). So, the pseudo-Hamiltonian denoted by X - ~ J V  in (8) is of the form 

N P n a x  

We implicitly assume here that Uii(p,p’) = 0. At the end of the calculations, we shall 
consider that all the chemical potentials p i@)  are site-independent. 

1.2. Physical information contained in incoherent intensity 

Expression (1) shows that incoherent intensity is a sesquilinear form of the effective 
transition matrix K1@) of reference site 1. The coefficients of this form are nothing 
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other than the Fourier transforms on the 2~ surface lattice of site-occupancy pair 
correlation functions T(p, p‘) .  So, two kinds of physical information are contained in 
this intensity: (i) information about the geometrical structure of adsorbate plus substrate 
complex; (ii) information about the statistical distribution of adsorbates at the ZD surface 
lattice sites. Let us first remember that a chemisorption state p denotes an adsorbate 
located at a well defined binding site of the surface. So, the effective transition matrix 
K, (p )  contains information about the geometrical arrangement of atoms which comprise 
adsorbate p and about their position with respect to the substrate atoms. On the other 
hand, K,(p)  does not depend on the statistical distribution of adsorbatep at t h e 2 ~  surface 
lattice sites. Conversely, the Fourier transform S(p, p ‘) of the site-occupancy pair 
correlation function T(p, p ‘) depends on this statistical distribution but does not depend 
on the geometrical structure of adsorbate p and p’ surrounded by their neighbouring 
substrate atoms. 

In the particular case of binary chemisorption, the incoherent intensity reduces to 
the product of a form factor lK1(1)12 by a structure factor S(1,l). In this case, using the 
fact that S only depends on kfi, - both kinds of physical information mentioned above 
can be easily separated by studying the logarithmic derivative L of the incoherent 
intensity with respect to incident energy E at constant kf,l - kill (Saldin et a1 1985). The 
singularities appearing in this logarithmic derivative can be eliminated by introducing 
Pendry’s Y function of L and of the absorption potential Im(V,,,,) (Pendry 1980). Then, 
comparison of measured and calculated Y functions allows one to extract physical 
information about the geometrical structure of the adsorbate plus substrate complex 
without having to determine the structure factor. Let us now remark that if the particular 
dependence of S(p, p’)  on the difference kfil - k , ~ ,  allows one to eliminate the structure 
factor, there is no particular dependence of K,(p)  on kfll and kill, which allows one to 
eliminate the form factor by using a similar process. So, the investigation of short-range 
order inside the overlayer can only be carried out by directly comparing measured and 
calculated intensities. Obviously, geometrical parameters that determine the form factor 
have to be determined preliminarily from Pendry’s Y function method. Then, the good 
statistical distribution of adsorbates leads to the best fit between calculated and measured 
intensities. 

Unfortunately, expression (1) for the incoherent intensity clearly shows that the 
previous separation into both kinds of physical information is no longer possible in the 
casep,,, > 1. Then, the Y function method cannot be applied and consequently studies 
of diffuse LEED intensity have to be carried out by directly comparing measured and 
calculated incoherent intensities. Even if we are only interested in the geometrical 
structure of adsorbate plus substrate complex, the structure factor determination can 
no longer be avoided as in the binary chemisorption case. 

1.3. Aim of thispaper 

In this paper, we give a simple statistical treatment of the diffuse LEED problem in the 
case of a surface partially covered with one or several kinds of adsorbate. This treatment, 
based upon a molecular-field approximation, allows one to treat the case of a sparsely 
populated top layer in which a strong repulsive coupling between adsorbates exists. This 
treatment also works in all cases where the interaction energy between adsorbates is 
below kT.  Structure factor S and average occupancy of each chemisorption state can be 
evaluated self-consistently, in terms of temperature, adsorption energies, chemical and 
pair interaction potentials. Some particular cases will be examined to illustrate this 
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problem. The simplest one, which we call binary chemisorption, corresponds to the 
chemisorption of an atom or a molecule at well defined sites of the surface. In these 
cases, the number of chemisorption states is 2: p = 0 corresponds to a vacancy and p = 
p,,, = 1 corresponds to the presence of an adsorbate. In this case, we carefully examine 
the validity of our statistical treatment in the strong-coupling limit. We also investigate 
two particular cases corresponding top,,, = 2. First, we consider a binary alloy with a 
surface segregation leading to an almost complete surface atomic layer. We also consider 
the case of a sparsely populated overlayer that contains two kinds of chemisorption 
states, which may describe the same adsorbate located at two different chemisorption 
sites or two different adsorbates located at well defined sites. In these two cases, 
expressions for incoherent intensities are given and experiments illustrating the second 
case are discussed. 

2. Statistical treatment of diffuse LEED 

2 .1 .  Molecular-field approximation 

Let us calculate the average of the operator X - pN. In a first stage, we consider that 
adsorbates are randomly distributed on the 2~ surface lattice sites. Then, for distinct 
sites i and j we have 

(n,(P>n,b’))  = (nrb))(n,(P’)) (loa) 
and consequently we obtain 

(X - P-lx) = -E [Eads(P) + Pr(P)l(nL(P)) 
1,P 

+ 4E E U,b, p’)(4(P))(n,(P’)). (lob) 
1 3 1  P.P’ 

In a second stage, we consider the case where the overlayer is partially ordered. In this 
way, equation ( l o a )  is no longer valid and (n,@)n,(p’)) has to be evaluated by using the 
general expression (6b) of T,(P,p’). Then, we can easily show that (X - pN) has the 
same form as in expression (lob) except that the pair interaction potential U occurring 
in this expression is replaced by an effective pair interaction potential U *  defined by 

The physical meaning of this effective potential clearly appears by examining the relation 

which can be established from (11). As defined in I, (nj(p’))ip is the average site occupancy 
of adsorbatep’ at site j calculated over a subset of the grand canonical ensemble in which 
all configurations lpl, p2 ,  . . . , pN) have the following property: site i is in chemisorption 
state pi = p. It follows that 

Both sides of (12a) are nothing other than the average potential at site i when this site is 
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occupied by adsorbate p .  This interpretation is obvious if we examine the right-hand 
side of (12a) in which average site occupancy of adsorbatep' at any site j # iis calculated 
by assuming that adsorbatep is located at site i. This means that occupancies for different 
sites are correlated. Let us note that (12a) could be considered as a definition of U * .  In 
fact, (12a) allows us to deal with the actual average site occupancies (n,(p)),  that is to 
say the surface coverages of each adsorbed species, which can be drawn from experiment. 
In return, correlation effects are taken into account by using an effective pair interaction 
potential U*. 

Let us now write n,(p)  in the form of a sum of its average and the deviation from this 
average: 

= (n,(P)> + S%(P) .  (13) 
Then. putting (13) back into expression (9) for X - pdV and using the fact that 
Ul](P,P'> = U]f (P ' ,P ) ,  we get 

(14a) 

Xo - ,N = -E (Eadr(P) + P,(P> - E U , ( P > ~ ' ) ( ~ , ( P ~ ) ) ) ~ ~ @ )  
1.P 13P' 

- ;I: c u,CP,p ' ) (n , (P) ) (n ,@' ) )  (14b) 

m = 4EE ~ , ( P , p ' ) ~ n , ~ ) ~ n , @ ' ) .  (14c) 

1.P 1.P' 

1.P 1.P' 

As X o  - ~ J Y  and 6 X  are operators that commute, we can easily show that the average 
of any physical quantity d depending on operators n l ( p )  is given by 

in which 

The randomness of the overlayer is expressed by the fact that, for any physical quantities 
dl, d2, . . ., d p  depending on occupancy operators, we have (dld2. . . d )(O) = 
(d,)(0)(d2)(0) . . , (d,,)(O). In this case, the fraction in (15a) is one, (d) = (d)fi) and 
consequently the grand canonical average of d can be indifferently calculated by using 
X or Xo.  Obviously, it is more convenient to use X o ,  which amounts to abandoning the 
fluctuation Hamiltonian 6%. When a partial order exists in the overlayer, the fraction 
in (15a) is no longer exactly equal to one. In this case, the abandonment of EX and the 
replacement of ( n , ( p ) )  with (n,(p))(") in (14b) is nothing other than the approximation 
called the molecular-field approximation (MFA). A simple examination of (14b) gives an 
obvious interpretation of X o .  Each site i occupied by adsorbate p interacts with three 
potentials: (i) E,,,@) describes its coupling with the substrate; (ii) p l ( p )  describes its 
coupling with a large reservoir containing molecules and atoms that are liable to be 
adsorbed (this reservoir is actually the world outside the adsorbate plus substrate 
complex); (iii) the molecular-field potential 

VY"(P) = I: UI] (P , i " , (P ' ) )  (16) 
1.P' 

describes its coupling with the average potential created by molecules located at sites 
j#i. 
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Expression (16) shows that the molecular field at site i is expressed in terms of the 
average site occupancies (nj(p’)) ,  which do not take account that site i is occupied by 
adsorbate p .  If we want to calculate correlation functions credibly, we have necessarily 
to evaluate VyF(p)  by replacing (n j (p’ ) )  in (16) with ( r ~ ~ ( p ’ ) ) ~ ,  given in (12b). In this 
way, we introduce in our formalism the fact that site occupancies are correlated. To 
arrive at such a modified molecular-field approximation, the occupation operators 
n, (p )  and n j ( p ’ ) ,  which occur in the interaction term of Hamiltonian (9), have to be 
decomposed into 

n i b )  = (ni(p)) jp ,  + 6n?’(p) 
nj(p’)  = (nj(p’))@ + dnjP(p‘). 

Henceforth, these expressions for n,(p) and nJ(p’) will replace the one given in (13). 
Then, putting back (17a) and (17b) into (9) and using relations (11) and (12a), % and 
X 0  now become 

x = xo - pN + 6% (18a) 

%o - pN = -C(E&@) + P I @ )  - 1.P’ E @,p’ ) (nJ@’) ) )n l@)  

‘ P  

- 4E 2 U ;  (p,p’>(nl(p)n,(p’>) (18b) 

(18c) 

[,P 1.P’ 

6% = 4E C U , ( p , p ’ ) G n ~ p ’ ( p ) G n f P ( p ’ ) .  
1.P JxP’ 

Let us examine the conditions for which we can abandon the quadratic term 6% given 
by (18~) .  But first come back to the previous case where 6% is given by (14c). In fact, 
the abandonment of this term requires that ((6%)’)(’) vanishes for any n.  In the case n = 
1, this condition means that (6nl(p)6n,(p’)) = T I J ( p , p ’ )  = 0 for any pair of distinct sites 
i and j .  This occurs when the overlayer is totally disordered. Let us now consider the 
quadratic term 6% given by (18c). A necessary condition to justify its abandonment is 
that 

This occurs either if there is no correlation between site occupancies (case already 
examined) or if Tl , (p ,  p ’ )  = -(nl(p))(nl(pr)).  This last condition can be rewritten in the 
form (n,(p)n,(p’)) = 0. Obviously, it cannot be fulfilled for any pair of different sites and 
any pair of adsorbates, otherwise we could only adsorb one adsorbate at one site of the 
surface. In practice, the quadratic term 6% given by (18c) only involves pairs of indices 
that refer to nearest-neighbour, next-nearest-neighbour, third-nearest-neighbour sites 
at the very most. In effect, in many current cases, interaction between pairs of adsorbates 
isdescribedby averyshort-range potential. In this way, (ni(p)nJ(p’))  = Oonlymeans that 
two adsorbates p and p ’ cannot coexist at nearest-neighbour, next-nearest-neighbour 
or third-nearest-neighbour sites. This situation occurs when the interaction potential 
between neighbouring adsorbates is repulsive and infinite. For this reason, condition 
(19) can never be verified exactly. What happens in practice is that, without being 
infinite, the nearest-neighbour potential is very large compared with kT = 1/p and 
consequently the probability of finding a pair of adsorbates at two neighbouring sites is 
very much lower than the product of probabilities of finding them separately at each of 
these sites. Moreover, as we restrict ourselves here to small surface coverage, the 
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correlation function I y p ,  p ’ ) ,  which is very close to - (n i (p ) ) (n j (p ’ ) ) ,  is necessarily 
small. Finally, in the case of a surface sparsely populated with adsorbates interacting by 
a short-range repulsive potential, we can expect that the quadratic term 6 X  given by 
(18c) can be neglected, even if this potential is large, which was not true in the MFA. Let 
us remark that the definition (8) of the grand canonical matrix allows us to add any 
constant to %to - ,UN without changing the physical information contained in this matrix. 
So, for convenience, we can drop the last term in (18c). Finally, instead of using the 
Hamiltonian X ,  we deal with 

hsCMFA(p)  =  ads(^) - P~(P> + E U,T (P, P ~ ) ( ~ ] ( ~ ’ ) ) S C M F A .  (20b) 

The index SCMFA indicates that this molecular-field approximation requires a self- 
consistent determination of T,(p, p ‘ ) .  The above Hamiltonian is a quasi-particle Ham- 
iltonian. In particular, we can easily show that its average counts the interaction energy 
twice. 

2.2. Determination of the site-occupancy pair correlation function 

Neither MFA nor SCMFA allows one to calculate the site-occupancy pair correlation 
function by directly starting from its definition (6b). In fact, this calculation is carried 
out by using the well known fluctuation dissipation theorem: 

in which A is a physical quantity that depends on site-occupancy operators n,(p) .  It 
allows one to give a relationship between the site-occupancy pair correlation function 
and the average site occupancies, between triplet and pair correlation functions, etc. 
For instance, in the case where A = n , @ ) ,  we obtain 

This expression will be used here to evaluate the pair correlation function. In a first 
stage, we have to determine the average occupation (n , (p ) ) .  Using the expression (8) of 
the grand canonical density matrix in which ’% is replaced by the expression (20a) of 
XsCMFA, we find 

I # ’  

d ( A ) / d P ] ( p ’ )  = P[(n] (P’ )A)  - (n , (p’ ) ) (A)I  (21) 

L](P> P ’ )  = ( M ” ) / d P ] ( P ’ ) .  (22) 

Index SCMFA has been abandoned for simplicity. Then, putting back (23) into (22) leads 
to 

The expression of dhk(Pk) /dpj (p’ )  occurring in (24a) can be evaluated from the SCMFA 
expression hk(pk) given in (20b). Substitution of this expression into (24a) leads to 

ri,(P,P’) = Aik(P,Pk)(akjap@’ - P 2 u ~ l @ k i P l ) r l j ( P l , P ’ )  
k , p  k / > P i  
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All the difficulties in solving this equation come from its last term. Let us remark that 
the MFA amounts to replacing U* with U .  In this case, this term disappears together with 
these difficulties. Unfortunately, it must be emphasised that the MFA determination of 
r is paradoxical because it consists of evaluating correlation functions from average site 
occupancies, which have been obtained by assuming the absence of correlation! This 
inconsistency can lead to non-physical results such as negative values of (ni(p)nj(p’)) .  
To avoid this drawback without having to face the difficulties mentioned above, we shall 
neglect the third term in (25a) .  So, we implicitly assume that the renormalised potential 
U* is independent of the chemical potential of sites. Let us now consider matrices r, A 
and U* whose coefficients are labelled with the pair of indices ( i ,  p )  by 

With the above approximation, equation (25a) reduces to the form 

2.3. Determination of the structure factor 

As seen in section 1, the structure factor S ( p ,  p ’ ,  q) is given by 
N 

s (P,P’ ,  4)  = E riib,~’) exp(-iqTi). 
i = l  

Here we have let q = kf,l - kill. Conversely, we have the relation 

In these expressions, B1 is the first Brillouin zone in the 2~ reciprocal lattice. In a similar 
way, we can define the Fourier transform of U * :  

N 

and conversely 
A 

d2q%*(p ,p’ ,  q)  exp[iq(Ti - Tj)]. ( 2 9 b )  

Fourier transforms and inverse Fourier transforms are calculated by using the well 
known summation relations: 
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At this stage, we have to assume that pi@)  is independent of site i. Consequently, 
average occupancies (n,(p)) become independent of sites. Then, using the above 
relations between correlation function, potential and their Fourier transform, it can 
easily be shown that the structure factor S obeys an equation that is very similar to 
equation (25b), which determines r. We obtain 

S(4) = @[I - P**(q)S(q)l. (30) 
In this equation, the elements of matrices S, 0 and 'U* depend on q and are labelled 
with indicesp = 1, . . . , pmax. So, we have 

An obvious solution of equation (30) is 

S(q) = [ 1 +  po**(q)]-'O. 

3. Case of binary chemisorption 

3.1. Incoherent intensity 

First, we consider the case where only one possible chemisorption state exists, that is to 
say where any chemisorption site can be occupied or not; hence the use of the word 
binary. As pmax = 1, matrices I?, 0 and %* in (32) reduce to scalars and the structure 
factor is given by 

In this way, expression (1) for the incoherent intensity becomes 

that is to say a product of a form factor by a structure factor. Let us remark that, if the 
overlayer is sparsely populated, y(k,~i - k,ll) is near (n) and consequently the incoherent 
intensity becomes proportional to the surface coverage in adatoms. In the present case, 
the structure factor y(kfli - kill) can be eliminated by using the Y function method 
mentioned in section 1.2. So, if we are only interested in the geometrical structure of 
the chemisorption site, then it is not necessary to know y(kfll - kIlI). 

As previously noted in section 1, we can expect that diffuse LEED experiments allow 
us also to gain some information about the statistical distribution of adsorbates. In the 
present theory of diffuse LEED, this distribution is characterised by the site-occupancy 
pair correlation function TL,(p,p'). This function has been evaluated by making a 
molecular-field approximation in which a renormalised pair interaction potential U* has 
been introduced. In this way, this treatment is expected to be valid even if a strong 
repulsion between neighbouring atoms occurs. Such a situation is of great interest 
because it is liable to be found in a lot of experiments concerning the adsorption of light 
atoms such as chalcogens at the main single crystal surfaces of transition metals. In these 
cases, interaction between adatoms, which is essentially indirect, is all the more repulsive 
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as the number of substrate atoms that are adjacent to both adatoms is large (Lopez eta1 
1980, 1981). The order of magnitude of this nearest-neighbour indirect interaction can 
reach several hundred meV and is consequently large compared with kT at room 
temperature (kT = 25 meV). On the other hand, indirect interaction generally becomes 
less than k T  as soon as adatoms are sufficiently distant to share no nearest-neighbour 
substrate atoms. Then, it may be repulsive or attractive (Einstein and Schrieffer 1973, 
Lopez et a1 1980, 1981) and, in spite of its smallness, this pair interaction plays a role in 
the appearance of superstructures at very low temperature. 

3.2. Validity of SCMFA in  the binary chemisorption case 

In section 2 ,  we have implicitly assumed that the renormalised interaction potential U* 
between adjacent adatoms remains finite even if the nearest-neighbour potential U 
becomes infinite. As a matter of fact, if we consider that neighbouring sites i and j are 
occupied by adsorbates p and p’ and that the interaction potential Ui j (p ,  p ’ )  tends to 
infinity, then T i j ( p ,  p ’ )  tends to - (n i (p ) ) (n j (p ’ ) )  and consequently expression (11) for 
U $  (p, p ’ )  appears as a product of two factors in which one becomes infinite and the 
other vanishes. In the large-coupling limit, this product is totally indeterminate and we 
cannot assert apriori that U $  (p, p ’ )  tends to a finite value, Let us now carefully examine 
this problem in the case of binary chemisorption. For this purpose, we are going to 
establish an equation for U! that, contrarily to (ll), does not depend on Tij. In a first 
stage, we assume that Q*(q) is small enough to expand the expression (33) of y(q )  in a 
power series in (n)( l  - (n))/3%*(q). Then, using the fact that the inverse Fourier trans- 
form of (%*(q))k for the lattice vector Ti is the matrix product 

(U*)$1 = 22. .  * 2 U ; , u & , .  . . U,.,-,, 
i l  i 2  f k - 1  

we calculate the inverse Fourier transform of this series and we obtain 
cc 

As Til depends on the coefficients of the first column of the matrix ( U * ) k ,  the kth-order 
term in (3.5~) is proportional to the number of possible ways that, starting from the 
reference site 1, we can arrive to site i by proceeding in k steps between nearest, next- 
nearest, . . . sites through the ZD surface lattice. Each of these possible ways defines a 
path. If we assume that U ,  is a nearest-neighbour interaction potential then we have 

in which N(1, i, k )  is the number of possible distinct paths to travel from site 1 to site i 
by k steps between adjacent sites and U* is the renormalised nearest-neighbour poten- 
tial. The total number of paths in k steps is (IV,)~ where N,  is the coordination number 
of a site (for example, N ,  = 4 for a square lattice). In fact, as all paths with k steps have 
the same probability, P( i ,  k )  = N ( 1 ,  i ,  k)/(NJk is the probability of finding an adatom 
at site i after k steps, whereas this adatom was initially located at the reference site. 
Finally, in the particular case of a nearest-neighbour interaction, (35a) can be rewritten 
in the form 

(U*)Fl = N(1, i, k)(U*)k 

.r 

Til = (n) ( l  - (n) )  ~ ( i ,  k ) [ - ~ ~ * ~ c ( n ) ( l  - (n) ) lk*  (35b) 
k=O 

Denoting bya and b the basis vectors of the 2~ surface lattice, the ith lattice site associated 
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P ( 2 , 2 k  + 1 )  

I 

0 5 10 15 

k 

Figure 1. The first 15 terms of the sequence P ( 2 , 2 k  + 1) illustrate its convergence to 0 and 
show that the ratio of two consecutive terms approaches 1 ( P ( 2 , l )  = 0.25). It seems that 
this sequence decreases more slowly than l/n.  In this case, the series X P ( 2 , 2 k  + 1) would 
diverge. 

with the lattice vector Ti = mia + nib is characterised by the pair of integers (mi, nJ .  
Then, let us define the parity of the ith site as mi + ni. In the case of a square lattice, it 
is easy to show that the parity of the number k of steps for travelling from the first site 
(ml = 0, n l  = 0) to the ith site is identical to the parity of the latter. As a consequence, 
(356) is an odd (respectively even) series if the ith site is odd (respectively even). On the 
other hand, we can travel through a triangular lattice from one site to another site by an 
odd or even number of steps. In fact, we have only to consider the infinite sequence of 
P(i ,  k )  # 0. Then, when k tends to infinity, it is obvious that P(i ,  k )  approaches 0 and 
that the ratio P(i ,  k ) / P ( i ,  k ' )  of two consecutive terms approaches 1 (see figure 1). Then, 
use of the classical tests for convergence of series allows us to assert that a sufficient 
condition for obtaining the convergence of the above series is that 

, 

The behaviour of the series (356) for /3U" = l/[N,(n)(l - (n))]  can be determined only 
if we know in detail the sequence of P(i ,  k ) ,  which is not the case. For a nearest-neighbour 
pair interaction, (11) shows that the evaluation of U* requires knowledge of r21. So, we 
particularly examine (356) for i = 2 (i = 2 labels one of the neighbours of the reference 
site). If we assume that the series 

oc 

E P ( 2 ,  k )  
k=O 

converges to a constant C, then the correlation function r21 = -C(n)(l - (n ) )  for two 
adjacent sites is not close to - (n)2 ,  as has been assumed previously (Conly depends on 
the lattice geometry). This is afortiori the case if the above series diverges. This means 
that the self-consistent determination of /3 U" has necessarily to provide a value markedly 
less than l/[Nc(n)(l - ( n ) ) ] .  

Let us now examine whether this condition is verified in the particular case where U 
is a very strong repulsive nearest-neighbour potential. We first put back (35a) into (11) 
and we obtain the following equation for U " :  
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Figure2. F(a) versus cuis represented for different 
cases: curve A, (n )  = 0.1, cuo((n)) = 2.250, 
cu((n)) = 0.9; curve B, (n )  = 0.2, cuo((n)) = 1, 
cu((n)) = 0.7; curve C, (n)  = 0.3, cuo((n)) = 0.583, 
cu((n)) = 0.510; curve D, (n )  = 0.4, cu,((n)) = 

1 0.375, cu((n)) = 0.365; curve E, (n)  = 0.5, 
cuo((n)) = 0.250, cu((n)) = 0.249. 

In this relation, summation over k runs from 1 instead of from 0 because (U * ) y 2  is always 
0. In fact, equation (36)  has to be self-consistently solved together with those which 
determine the surface coverage (n): 

k 

In the case of adatoms located at the sites of a 2D square lattice and interacting by a 
nearest-neighbour pair interaction, we can easily show that the renormalised coupling 
parameter U* between adjacent adatoms is given by 

3c 

1 - C. P(2,2k + l)(n)2k(l - ( n ) ) 2 k + 2  

(%a) 

As previously, the index i = 2 occurring in P(2,2k + 1) denotes one of the N ,  sites that 
are adjacent to the reference site. This expression clearly shows that we have the 
inequalities 

PU 1 
1 + PU(1 - (n))2 < ( 1  - ( n ) ) 2 '  

pu* < 

In the strong-repulsive-coupling limit PU+ t ~ ,  PU* can be written in the form BU" = 
a / ( 1  - (n))2 in which a is a dimensionless parameter. It follows from (38b) that a < 1. 
This parameter is obtained by solving the equation: 

m 

LE = F ( a )  = 1 - a N ,  P(2,2k + 1) 
k = l  

Figure 2 shows different solutions a((n)) of (38c) for different values of (n)  and the values 
ao((n)) for which F ( a )  diverges, that is to say 

Let us come back to the condition (35c) ,  which can be rewritten in the form 
ao((n)) = (1 - (4)/Nc(n). 
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cu((n)) < cuo((n)). As previously noticed, cu((n)) has actually to be markedly less than 
ao((n)). Figure 1 shows that it is only true for small values of (n)  ( (n)  6 0.2). In the strong- 
coupling limit (/3U-. m), expression (3%) for rll, which becomes 

is expressed in terms of a series that quickly converges, provided that the coverage (n)  
is small. So, its inverse Fourier transform y(q) is a convergent series too. This justifies a 
posteriori that we can expand (33) in a power series. 

3.3. Correlation functions at low surface coverage and their physical interpretation 

For (n)  6 0.2, we can now provide a good approximation of Til by keeping only the 
lower-order terms of its expansion, even for large values of /3U. We consider here the 
case of a square surface lattice. For convenience, in the present case we modify our 
notation in such a way that Tmn represents the correlation function between occupancies 
of the reference site and of the site defined by the lattice vector mu + nb. From (35a) 
and (38a), we easily obtain the following results: 

-3/33U3(n)4(1 - (n ) )4  
= 

r21 = [ I  + ~ ( 1 -  ( n ) ) 2 1 3  

In the strong-repulsive-coupling limit, (40a) indicates that Tlo approaches - (n)* or 
equivalently that the probability (noonlo) of finding two adjacent adatoms is of order 
greater than 2 in (n) .  So, at low coverage two adatoms cannot coexist at adjacent sites if 
they interact by a strong repulsive potential. Expressions (40b-d) show that, if sites 
(m,  n)  and (0,O) are not adjacent, then Tmn is of order greater than 2 in (n) .  It follows 
that (noonm,) - (n)2 ,  which means that occupancies of non-adjacent sites are very weakly 
correlated. Examination of (40a-d) allows us also to remark that the sign of Tmn is 
directly related to the parity of m + n. More precisely, if an adatom is adsorbed at the 
origin site then, in its vicinity, the sublattice corresponding to m + n even is occupied 
more than the odd sublattice. Such a result indicates a trend in the appearance of a 
c(2 x 2) superstructure. The appearance of a p(2 X 2) superstructure would be similarly 
predicted by incorporating the next-nearest-neighbour interactions. So far, we have 
assumed that U is positive. The previous developments are still valid if U is negative 
provided that it is small in modulus compared with kT.  In this case, expressions (40a-d) 
indicate that Fmn is always slightly positive. It means that if the reference site is occupied, 
then occupancies of the first-, second-, third-, . . . nearest-neighbour sites are slightly 
larger than the average site occupancy. So, for small negative pair interaction potentials, 
there is a trend towards condensation in the vicinity of an occupied site. 

3.4.  Diffuse LEED from vacancies 

We cannot end this section without noting that S(1 ,1 ,  q) only depends on (n ) ( l  - (n)) .  
This remark suggests that the expressions (33) for the structure factor and (34) for the 



Statistical aspects of diffuse L E E D  3157 

incoherent intensity remain valid when (n)  is near 1, which corresponds to an almost 
complete top layer. This situation has been examined by Rous and Pendry (1985) when 
surface and bulk atoms are identical. These authors give a multiple scattering theory of 
diffuse LEED from isolated surface vacancies. They conclude that the diffuse LEED 
intensity is proportional to the form factor of an isolated surface atom and they inves- 
tigate this form factor by using the Y function method. As a site of the surface is either 
occupied or not by one kind of atom, the incoherent intensity has the form given in (1) 
forpmax = 1 (Le Boss6 eta1 1988), that is to say the form of expression (34). In this way, 
the diffuse LEED intensity can be investigated with the help of the Y function method. 

Nevertheless, even in this situation, it would be interesting to obtain some infor- 
mation about the structure factor. Since the expression for S(1,1, q)  given in (33) can 
be used only if the condition (19) is satisfied, we have to reconsider the validity of this 
condition in the case of an almost complete top layer. For this purpose, it will be 
convenient to deal with the vacancy occupation operator n,(O) = 1 - n,(l) rather than 
with nl( l ) .  It is easy to show that 

0) = L, (L  1) = (n,(O>n,@)) - (n,(O)Hn,(O)). 
So, p andp '  can be replaced by 0 in (19). As previously seen in section 2.1, this relation 
is fulfilled either if there is no correlation between site occupancies or if r!,(l, 1) = 
r,,(O, 0) = -(n,(O))(n,(O)) for a pair of neighbouring sites i and j .  The last condition is 
actually equivalent to (n,(O)n,(O)) = 0 and means that two vacancies cannot be found at 
a pair of neighbouring sites. This would imply the existence of a short-range repulsive 
potential between them. However, by replacing n,(l) with 1 - n,(O) in the pseudo- 
Hamiltonian (9), it is easy to show that the pair interaction potential between surface 
atoms is identical to that between vacancies. As a matter of fact, the cohesion of the 
crystal surface requires these potentials to be attractive. This result is not surprising if 
we note that the number of bonds we have to break to create two adjacent vacancies is 
less than for creating two separated vacancies. As a consequence, vacancies tend to 
condense and the effects of this condensation are probably the creation or the dis- 
placement of steps and kinks. Then, we can legitimately ask if, in realistic situations, the 
diffuse LEED intensity comes from surface defects such as steps and kinks rather than 
vacancies? In fact, attraction between vacancies contradicts the condition r,,(O, 0) = 
-(n,(O))(n,(O)) and the only way to satisfy condition (19) is to assume that there is no 
correlation between site occupancies (rL,(O, 0) = 0), that is to say that vacancies are 
randomly distributed. Such a situation is liable to be observed at a temperature suf- 
ficiently high to have the interaction potential small compared with kT.  In this case we 
have 

r,dL 1) = [ n v U  - n d 1 4 1 .  
This expression, which depends on the vacancy concentfation nv = 1 - (n) ,  allows us to 
deduce S( 1, 1, kfll - /Cl,) from (6b) and Zlncoh from (1): 

Finally, as nv(l  - nv) = (n)(l - ( n ) ) ,  this expression is identical to the limit of the 
expression (34) when (n)  approaches 1. So, in agreement with Rous and Pendry (1985), 
the diffuse LEED intensity coming from vacancies is proportional to the form factor of a 
single surface atom. However, contrarily to the case of a surface layer sparsely populated 
with adatoms, the multiple scattering processes inside an almost complete surface layer 
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play an important role. In this way, the expression for K 1  given in (3a) has to be replaced 
by the general expression (4.14) given in I. 

4. Case where two chemisorption states exist 

In this section, we examine two situations for which pmax = 2. In the first situation, a 
quasi-complete layer contains two kinds of atom, which occupy well defined sites of the 
surface lattice. For instance, this situation corresponds to disordered metallic binary 
alloys for which all surface sites are not necessarily occupied. So, a small concentration 
in vacancies is taken into account. In the second situation one kind of molecule is 
adsorbed at two equivalent sites. Both chemisorption states associated with both 
chemisorption sites are assumed to be statistically equivalent. 

4.1. Case of a quasi-complete surface atomic layer composed of two kinds of atom 

Let us call the atoms of the surface atomic layer A and B. Instead of dealing with (n(A)) 
and (n(B)), it is more convenient to consider the two independent parameters cA and E 

given by 

E = 1 - (n(A)) - (n(B)). (41b) 
We assume that the overlayer is almost complete. In this way, the parameter E is small 
compared with 1. Actually, the incoherence of the wave scattered at the surface comes 
from the chemical disorder inside the top layer as well as the chemical disorder of deeper 
atomic layers. So, neglecting the latter can seem to be an unrealistic situation. However, 
recent LEED experiments (Baudoing et a1 1986) on Pt-Ni alloys indicate that, in some 
particular cases (for instance, the (1 11) single-crystal surface of PtlO-Ni90 alloy), the 
second atomic layer practically contains only one kind of atom (-100% Ni) and thus is 
not chemically disordered. In this way, this layer contributes weakly to the incoherence 
of the scattered wave. On the other hand, incoherence due to the chemical disorder 
inside the bulk of the alloy could be ascribed to the third, fourth, etc, atomic layers from 
the surface. However, their contribution to incoherent intensities is actually negligible 
because twice their distance from the surface is near to or more than the inelastic mean 
free path at diffuse LEED energies. In this particular case, we can conclude that the 
incoherent intensity essentially comes from the disorder inside the surface atomic layer. 

Using (41a) and (41b), it is easy to show that the matrix 0 defined in (31a) can be 
decomposed into 

in which V is the symmetrical matrix 
@ = C A ( 1  - C A ) v  f 6 0  (42a) 

1 -1 

v =  [-1 11 
whose coefficients are labelled by A and B, and 6 0  is a matrix that vanishes with the 
vacancy concentration E .  Let us substitute the expression (42a) for 0 into (32). Then, 
we obtain 

s(q) = C A ( 1  - C A ) v  f 6 0  - p c A ( 1  - c A ) v w * ( q ) s ( q )  - ps@%*(q)s(q) (43a) 
in which 'U* (q )  is given by 
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4.1.1. Case of a complete top layer. First, let us examine the case of a complete surface 
layer. Parameter E vanishes and equation (43a) reduces to 

sO(4) = - cAlv[l - PQL*(q)sO(4)] (44) 
which can be solved exactly. For this purpose, we first have to establish the following 
identity: 

[l + PcA(1 - cA)v**(4)1-1 = - PrO(4)V**(q). (45) 
This expression depends on yo(q) given by 

in which T * ( 4 )  is defined as 

V*(q)  = %.*(A, A, 4 )  + %.*(B, B, 4 )  - 2%.*(A, B, 4 ) .  (47) 
Use of the above identity in equation (44) leads to 

Soh) = YO(4)V. 
Examination of (33) and (46) shows a certain similarity between binary chemisorption 
and the present case. This is not surprising because for a complete surface layer consisting 
of two kinds of atom, we find again an alternative between two occupation states: sites 
are occupied by A or B (instead of being occupied or unoccupied). However, the physical 
situations corresponding to the pair atom A/atom B and to the pair adatom/vacancy are 
very different. First, interactions between atoms A or between atoms B are considered 
in the same way, whereas no interaction between vacancies occurs. Consequently, it 
does not matter whether we consider case cA = 0 or case cB 0 whereas cases (n)  = 0 
and (n)  = 1 are not equivalent (see discussion in section 3.4). Secondly, the interaction 
potential between atoms of an alloy generally has an attractive short-range part whereas 
the indirect interaction between neighbouring adatoms is mostly repulsive. In fact, 
expression (47) shows that the statistical distribution of atoms a and B depends on the 
effective potential 

V ;  = U: (A, A) + U: (B, B) - 2U: (A, B). (49) 
In order to simplify the discussion, let us assume that U ;  ( p , p ' )  is a nearest-neighbour 
interaction potential. If the average of potentials between identical atoms is exactly 
equal to the potential between two different atoms, then V,T = 0 and we obtain from 
relations (28a) and (48) 

r, (P , P ' = cB v(P , P ' r, * (50) 
This correlation function describes the case of a totally disordered surface layer. On the 
other hand, when V* > 0, the average attraction between A and B is stronger than the 
attraction between identical atoms. Atoms A and B tend to be surrounded by unlike 
neighbours. In the opposite case, when V* < 0, the same kind of atoms tend to clump 
together. It must be emphasised that such a trend to segregation inside the top layer is 
certainly closely connected to the catalytic activity of surface alloys inasmuch as binding 
sites with one kind of atom are more often present than binding sites with unlike atoms. 
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Now let us come back to condition (19). As previously mentioned, this condition 
only concernspairs of sites that are very close together. Before writing it, we can establish 
from (28b), (48) and (42b) that 

Ti,(A, A) = Tl,(B, B) = -I'L,(A, B) = TL,.  (51) 
In this way, condition (19) is rewritten in the form 

L , ( l  + r , / c a >  = 0 

r,u + rg/c2B) = 0 

- rr,/cAcB) O. 

If TI, is not small compared with 1, (19) reduces to three incompatible conditions TL, = 
-ca, Tr, = -e; and TLl = cAcB. Consequently, the SCMFA, which consists of neglecting 
the quadratic term of X in fluctuation occupations, is valid if TL, is small and yo(q) too. 
This requires a small effective potential V" compared with kT and a low concentration 
in one of the elements of the alloy. 

From (48) and (1) we now calculate the incoherent intensity. However, let us note 
that, in the present case, coherent multiple scattering inside the top layer plays an 
important role and thus we can no longer use the expression (3a) of K1: we must revert 
to the expression (4.14) of K1 given in I .  This calculation leads to the expression 

in which the superscript (0) refers to the case E = 0. For reasons examined above, this 
incoherent intensity is very similar to that obtained in the case of binary chemisorption 
(see (34)). However, let us remark that the form factor is the square modulus of the 
difference between the effective transition matrix of each atom of the alloy. The Y 
function method can again be applied here to investigate the diffuse LEED intensities 
without having to consider the structure factor yo(q). However, if this method allows us 
to gain information about the position of surface atoms relative to the atoms of the 
second layer, we cannot obtain any information about their statistical distribution. Such 
information is contained in the structure factor yo(q) and can only be drawn from direct 
comparison between measured and calculated intensities. 

4.1 .2 .  Case of an incomplete top layer. As a matter of fact, investigation of the form 
factor by using the Y function method is no longer possible for a top layer composed of 
two kinds of atoms and containing vacancies. Let us now treat this situation in the specific 
case where the concentration E of vacancies is small. For this purpose let us separate S(q) 
into two terms, 

S(q) = SO(d + W q ) .  (54) 
From equations (43a) and (48), we obtain an equation for 6s: 

As we want a first-order expression in E of 6S(q), we neglect the last term in ( 5 5 ) .  Again 
using identity ( 4 9 ,  we easily solve (55) and we obtain 

SS((I) = [1 - Bro(CI)V**(q)lW1- PYo(qFu*(4)V1. (56) 
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In this expression, 6 0  derived from (31a) and (42a) is given by 

Then, putting back (56) and (54) into (l), we obtain an expression for the incoherent 
intensity, which is the sum of two terms, 

(58)  p 
Imcoh  = incoh + gzmcoh. 

The first term associated with the complete top layer is given by (53) and the second term 
is proportional to the vacancy concentration E .  For convenience, let us define 

H , ( A , k ;  + k : ) = ( l  -p~o(q)[Q*(A,A,q) -Q*(A,B,q)])Ki(A,kF + k : )  

+ Pro(q)[Q”(A, A,  9)  - %*(A, B, q)IK,(B, k; + k : )  (59a) 

B, q)]}Ki(B,k; + k : ) .  (59b) 

H1(B, k ;  t k : )  = Pro(q)[q.”(B, B, 4) - %*(A, B, ~ ) J K I ( A ,  kF + k : )  

+ (1 - /3Yo(q)[Q”(B, B, 4) - 
In these relations we have let q = kfll - k,,I. Finally, 6 l I n c o h  is given by 

Expressions (59) and (60) show that, in the case where E # 0, a calculation of incoherent 
intensity requires knowledge of all pair interaction potentials. At this stage, let us note 
that the description of interactions between atoms of a disordered alloy in terms of pair 
interactions has recently been proved in a paper by Treglia et a1 (1988). More precisely 
it has been shown that an effective Ising model can be used to study ordering at transition- 
metal alloy surfaces. In fact, Hamiltonian (9) used here forpmax = 2 and (n(0)) = 0 could 
also be rewritten in the form of an Ising Hamiltonian. Moreover, in this paper, an 
effective pair interaction potential is evaluated for the three low-index faces of the FCC 
lattice as a function of the average d band filling and of the concentration cA. This 
potential turns out to be very complicated. It cannot be approximated by a nearest- 
neighbour and next-nearest-neighbour potential as in the case of chemisorption of light 
atoms. So, evaluation of diffuse LEED intensities in the case of an incomplete layer is 
certainly a tricky problem. 

4.2. Case of a loosely populated overlayer 

We consider now two occupation states U and U and we assume that (n(u)) + (n(v)) is 
small compared with 1. For example, U and U may denote two possible non-equivalent 
chemisorption sites for one kind of atom or molecule, or two kinds of atom or molecule 
each of which may be adsorbed at a well defined chemisorption site. Now, the expression 
of the structure factor obtained from (32) is no longer as simple as in the binary chemiso- 
rption case. Let us assume that coverages (n(u) )  and (n(u)) and the renormalised poten- 
tial /3%*(p, p ’ ,  q)  are such that the coefficients of the matrix p@a(L*(q) remain small 
compared with 1. Similarly to the case of binary chemisorption, we can expand (32) in a 
power series of these coefficients. However, we only keep terms of first and second order 
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in (n(u) )  and (n(u) ) ,  which leads to the following approximation of the structure factor 
S(q) : 

S ( P , p ’ ,  4)  = (n (P) )6ppJ  - (n(p))(n(p’))[l + PQ*(P,P’ ,  41. 

rv(p, p ’ )  [ (n(p) )dpp ,  - ( n ( ~ ) ) ( n ( ~ ’ ) ) l d l j  - P(n(p))(n(p’))U$ (P, P‘>. (62) 

(61) 
Let us first examine the validity of this approximation. From (61) and (28a), we can 
derive an approximate expression of the correlation function: 

Use of this expression in (11) leads to the renormalised potential 

In this way, condition (19) becomes 

As Ui,(P,p’)  is a short-range order potential, we can restrict condition (64) to the case 
where i and ja re  adjacent sites. So, at low coverage, this condition is roughly fulfilled for 
any repulsive interaction potentials or for attractive potentials that are small compared 
with kT(in the latter case Ti j (p ,  p ’ )  almost cancels). We have here similar restrictions to 
those previously obtained in the binary chemisorption case. 

Using (61) and the general expression (1) for the incoherent intensity, we get the 
following approximation of Zincoh: 

x ~ * ( p , p ’ , k f l l  - kiIl)(n(p’))Kl(p’,k; tk:)). 
In the case where the matrix coefficients P % * ( p , p ’ ,  q)  are about 1, we cannot neglect 
the last term in expression (65), which is associated with the presence of a partial order 
inside the overlayer. Then, it can easily be seen that the logarithmic derivative L of the 
incoherent intensity with respect to incident energy at constant kfll - kill (and conse- 
quently the Y function) depends not only on the form factors Kl(u )  and Kl(v) but also 
on P%*(p ,p ’ ,  q) ,  that is to say on the statistical distribution of occupied states. In this 
case, the use of this method is meaningless. Conversely, in the case of a random dis- 
tribution of occupied states ( f lQ*(p,  p ’ ,  q)  = 0), the last term in (65) can be neglected. 
Then, the question of the elimination of a structure factor no longer arises. In this case, 
the use of the Y function method amounts to taking another look at the experimental 
data without modifying the physical information that we can draw from them. 

Let us remark that, in the limit of very low surface coverage, the first two terms 
in expression (65) play a predominant role. For comparison, let us come back to the 
expression (34) of the diffuse LEED intensity obtained for one adsorbate and calculated 
in this limit: 
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Then, the first two terms in (65) can be interpreted as the sum of incoherent intensities 
associated with each scatterer separately. Unfortunately, diffuse LEED experiments can- 
not be carried out for very small surface coverage because: (i) measurement of incoherent 
intensities becomes tricky; (ii) geometrical disorder in the substrate and chemical dis- 
order in the overlayer are liable to exert an equal influence on the incoherence of waves 
scattered at the surface. Consequently, available and usable experimental data probably 
include surface coverages for which one cannot keep only the first two termsin expression 
(65). In fact, it can easily be seen that, when the surface coverage reaches 0.2, the third 
term in this expression is liable to be important if interferences between waves emitted 
at the two kinds of scatterers are constructive, which can occur for certain values of 
k; and k: . So, even in the case of a totally random overlayer, the incoherent intensity 
does not generally reduce to the average of incoherent intensities associated with each 
adsorbed species. 

In fact, the Y function method has been applied to cases where there are two or more 
than two kinds of bonding sites. For instance, Blackman et a1 (1988) use a Y function 
analysis for CO/Pt(l 1 l ) ,  from which it is concluded that, at one-third of a monolayer 
coverageat 160 K, (88 t 9% of theCO moleculesoccupy topsites and (12 t 5)% bridge 
sites. First, let us note that, in this case, there are four possible different bonding sites at 
least: a top bonding site ( p  = t), a bridge bonding site ( p  = b,) and two others ( p  = 
b2 and p = b3) obtained by rotations by 120". In this way, the expression (65) for the 
incoherent intensity is no longer valid and has to be replaced by a similar expression 
including four states t ,  b l ,  b2 and b3 instead of two states U and U .  Blackman et a l ( l988)  
assume that 'diffuse LEED intensities due to adsorbates at different bonding sites can 
simply be added incoherently'. In this case, the incoherent intensity would have the form 

which means that a term similar to the third term in (65) would be negligible. As pre- 
viously mentioned, this approximation, which is good at very low coverage, may be 
questionable in the present case, where the total coverage in CO is about 0.3. Moreover, 
use of the Yfunction method apriori assumes that the true expression of the diffuse LEED 
intensity is obtained by multiplying (66) by a structure factor, which is not actually the 
case (see (65)). In fact, no factorisation of the first two terms of (65) can be achieved 
with another factor only depending on kfll - kill. Blackman et a1 (1988) notice that the R 
factor value of 0.55 is not as good as that found in the O/W(O 0 1) structure analysis, R = 
0.13 (Heinz er a1 1986). This is not surprising because the adsorption of oxygen at the 
W(0 0 1) surface is a binary chemisorption case where the Y function method can be 
used, while it is not the case for the CO/Pt(l 1 1) system. In this last case, diffuse LEED 
intensities have to be calculated by taking into account short-range coupling between 
CO molecules located at two neighbouring sites. Then, these calculated intensities must 
be directly compared with measured intensities. 

The Y function method has also been used to investigate the diffuse LEED spectrum 
obtained from the CO,/Ni(l 1 0) system, which is not relevant to the binary chemi- 
sorption case (Illing et a1 1988). A lot of possible bonding sites are examined (hollow, 
short bridge, long bridge and top sites) and for each of them two non-equivalent direc- 
tions parallel and perpendicular to the (1 10)  azimuth are considered. Among all the 
possible situations that can be envisaged, the authors sort on the top site for which both 
orthogonal directions are equally occupied: it definitely leads to the best R factor ( R  = 
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0.15 instead of R = 0.2-0.3 for other situations). Thus, we should be in the casep,,, = 
2. For each distinct chemisorption site, two parameters are considered: the CO bond 
angle and the C-Ni distance. In this way, the best agreement between experiment and 
theory corresponds to a minimum of the R factor in a four-dimensional parameter space. 
Three spatial configurations of the CO2 molecules are considered: they lead to three sets 
of optimal parameters. Unfortunately, the R factors calculated for these three sets are 
very near. In this way, no conclusions about the spatial configuration of the COzmolecule 
have been drawn. The authors conclude that a larger set of experimental data would 
allow them to distinguish between the three adsorption geometries. 

Assuming that we have the top bonding site with two possible directions, we think 
that steric interactions absolutely prevent certain configurations with two molecules 
adsorbed at neighbouring sites. This short-range interaction is very strong, in such a way 
that the last term in (65) cannot be neglected. So. the use of the Y function method is not 
suitable in this case. For reasons previously mentioned, the third term in (65) can be a 
non-negligible correction to the first two. Its relative importance depends on the cover- 
age in CO,, which is not indicated in this paper. At  this stage, let us remark that the R 
factor value obtained in this case (0.15-0.17) is close to that obtained for the O/W(O 0 1) 
case and is markedly better than in the CO/Pt(l 1 1) case. This fact could appear as a 
point in favour of the use of the Y function method. However, we can ask about the 
meaning of an R factor obtained from one diffuse LEED spectrum. In fact, the answer to 
this question is in a paper by Starke et a1 (1988) in which the misleading nature of 
conclusions resulting from the use of only one Y function screen is pointed out. Para- 
phrasing these authors, we can state that an accurate surface structure determination of a 
complex involving elements such as substrate reconstructions, low-symmetry adsorbate 
positions or perhaps one involving molecular adsorbates requires the use of several 
diffuse LEED spectra. In conclusion, for this case, it should be advisable to compare 
experiment and theory by using (i) a database as large as possible and (ii) a diffuse LEED 
theory including the statistical distribution of molecules inside the overlayer. 

5. Conclusion and discussion 

The increasing importance of partially or imperfectly ordered chemisorbed overlayers 
requires a very serious surface structure analysis. Diffuse LEED is a powerful tool for 
achieving such an analysis. So far, this technique has mainly been used for determining 
the geometry of a unique binding site, which can be occupied or not (binary chemi- 
sorption). In this case, and only in this case, the incoherent intensity reduces to the 
product of a form factor, which only depends on the binding site geometry, and a struc- 
ture factor, which characterises the statistical distribution of occupied sites. Then, using 
the fact that the structure factor depends only on the difference between components 
parallel to the surface of initial and final wavevectors, it is possible to exhibit a function 
(Pendry’s Y function) of the form factor only. So, the binding site geometry can be 
investigated without having to treat the statistical aspects of the diffuse LEED problem. 
In the case where several species are co-adsorbed or where one adsorbed species has 
several possible binding sites, the use of the Y function method is meaningless. For low 
surface coverages and high temperatures, interactions between adsorbates do not dictate 
the position of one adsorbed species with respect to another. Then, we can consider that 
adsorbates are randomly distributed on the surface and consequently no structure exists. 
For this reason, we are not faced with the elimination of a structure factor: direct com- 
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parison of measured and calculated diffuse LEED intensities allows us to reach the 
geometry of binding sites. Unfortunately, available experimental data correspond to 
surface coverages that have to be large enough to ascribe the incoherence of the scattered 
wave mainly to disorder in the overlayer. For such coverages, we can express serious 
doubts about the randomness of the overlayer: then, evaluation of diffuse LEED inten- 
sities actually requires the determination of site-occupancy pair correlation functions as 
well as their Fourier transforms. Finally, except for the binary chemisorption case, 
diffuse LEED studies have necessarily to be carried out by directly comparing measured 
and calculated intensities. So, geometry of binding sites and statistical distribution of 
adsorbed species on these sites need to be considered together to carry out these cal- 
culations. 

In fact, the statistical aspects of the diffuse LEED problem have practical and theor- 
etical importance for surface catalysis. For instance, it may be important to know if two 
adsorbed species are more frequently located at neighbouring sites than at distant sites, 
or if binding sites of a binary alloy surface are compounded with one kind of atom rather 
than several. A molecular-field treatment of diffuse LEED in which correlations are 
introduced allows one to evaluate the structure factor for a large variety of situations, 
including binary chemisorption. Because of its relative simplicity, we have particularly 
focused on the latter. We have shown that we can obtain a fairly good description of 
overlayers sparsely populated with repulsive adsorbates. This description remains valid 
if the pair interaction potential U between two adjacent adatoms is very large compared 
with kT,  provided that the surface coverage is small ( (n)  < 0.2 for a square lattice). 
Beyond this limit, we can imagine that diffuse LEED intensities drop abruptly to zero 
while the appearance of fractional order peaks in the LEED pattern is evidence of long- 
range order inside the overlayer (diffuse LEED intensities concentrate into new LEED 
channels). In fact, we are only interested here in the first stages of the appearance of 
order. By varying the temperature and exposure of a single-crystal surface to a gas, we 
can expect that a good description of the increasing appearance of order that can be 
observed in diffuse LEED experiments allows one to go back from the effect to the cause, 
that is to give the interaction force law between adsorbates. 
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